Quantum Information Complexity and Direct Sum

Dave Touchette Université de Montréal

QIP 2015, Sydney, Australia

Interactive Quantum Communication

• Communication complexity setting:

- Information-theoretic view: quantum information complexity
 - ▶ How much quantum **information** to compute f on μ

Results

- ullet Definition of quantum information complexity of task $T=(f,\mu,\epsilon)$
- Interpretation as amortized communication

$$Policization QIC(T) = AQCC(T) := \lim_{n \to \infty} \frac{1}{n} QCC(T^{\otimes n})$$

- Properties
 - ▶ Lower bounds communication: $QIC(T) \leq QCC(T)$
 - ★ No dependance on # of messages M
 - ▶ Additivity: $QIC(T_1 \otimes T_2) = QIC(T_1) + QIC(T_2)$
- Application to direct sum for quantum communication
 - Protocol compression builds on one-shot state redistribution of [BCT14]
 - ► *M*-rounds: $QCC^M((f,\epsilon)^{\otimes n}) \in \Omega(n(\frac{\delta}{M})^2 QCC^M(f,\epsilon+\delta) M)$
- Potential application to communication lower bound
 - Direct sum on composite functions
 - ▶ E.g.: reduction from QIC of $DISJ_n$ to QIC of AND
 - ▶ Conjecture for $DISJ_n$: $QCC^M(DISJ_n) \in \Theta(\frac{n}{M} + M)$
 - ► Known bounds: $O(\frac{n}{M} + M)$, $\Omega(\frac{n}{M^2} + M)$ [AA03, JRS03]

Direct Sum

Results

- ullet Definition of quantum information complexity of task $T=(f,\mu,\epsilon)$
- Interpretation as amortized communication: QIC(T) = AQCC(T)
- Properties
 - ▶ Lower bounds communication: $QIC(T) \leq QCC(T)$
 - ★ No dependance on # of messages M
 - ▶ Additivity: $QIC(T_1 \otimes T_2) = QIC(T_1) + QIC(T_2)$
- Application to direct sum for quantum communication
 - Protocol compression builds on one-shot state redistribution of [BCT14]
 - ► *M*-rounds: $QCC^M((f,\epsilon)^{\otimes n}) \in \Omega(n(\frac{\delta}{M})^2 QCC^M(f,\epsilon+\delta) M)$
- Potential application to communication lower bound
 - Direct sum on composite functions
 - ▶ E.g.: reduction from QIC of $DISJ_n$ to QIC of AND
 - ▶ Conjecture for $DISJ_n$: $QCC^M(DISJ_n) \in \Theta(\frac{n}{M} + M)$
 - ► Known bounds: $O(\frac{n}{M} + M)$, $\Omega(\frac{n}{M^2} + M)$ [AA03, JRS03]

Disjointness Decomposition

Results

- ullet Definition of quantum information complexity of task $T=(f,\mu,\epsilon)$
- Interpretation as amortized communication: QIC(T) = AQCC(T)
- Properties
 - ▶ Lower bounds communication: $QIC(T) \leq QCC(T)$
 - **★** No dependance on # of messages M
 - ▶ Additivity: $QIC(T_1 \otimes T_2) = QIC(T_1) + QIC(T_2)$
- Application to direct sum for quantum communication
 - Protocol compression builds on one-shot state redistribution of [BCT14]
 - ► *M*-rounds: $QCC^M((f,\epsilon)^{\otimes n}) \in \Omega(n(\frac{\delta}{M})^2 QCC^M(f,\epsilon+\delta) M)$
- Potential application to communication lower bound
 - Direct sum on composite functions
 - ▶ E.g.: reduction from QIC of $DISJ_n$ to QIC of AND
 - ▶ Conjecture for $DISJ_n$: $QCC^M(DISJ_n) \in \Omega(\frac{n}{M} + M)$
 - ► Known bounds: $O(\frac{n}{M} + M)$, $\Omega(\frac{n}{M^2} + M)$ [AA03, JRS03]

Results

- **<u>Definition</u>** of quantum information complexity of task $T=(f,\mu,\epsilon)$
- Interpretation as amortized communication: QIC(T) = AQCC(T)
- Properties
 - ▶ Lower bounds communication: $QIC(T) \leq QCC(T)$
 - **★** No dependance on # of messages M
 - ▶ Additivity: $QIC(T_1 \otimes T_2) = QIC(T_1) + QIC(T_2)$
- Application to direct sum for quantum communication
 - Protocol compression builds on one-shot state redistribution of [BCT14]
 - ► *M*-rounds: $QCC^M((f,\epsilon)^{\otimes n}) \in \Omega(n(\frac{\delta}{M})^2 QCC^M(f,\epsilon+\delta) M)$
- Potential application to communication lower bound
 - Direct sum on composite functions
 - ▶ E.g.: reduction from QIC of $DISJ_n$ to QIC of AND
 - ▶ Conjecture for $DISJ_n$: $QCC^M(DISJ_n) \in \Theta(\frac{n}{M} + M)$
 - ► Known bounds: $O(\frac{n}{M} + M)$, $\Omega(\frac{n}{M^2} + M)$ [AA03, JRS03]

Unidirectional Classical Communication

- Separate into 2 prominent communication problems
 - Compress messages with "low information content"
 - ► Transmit messages "noiselessly" over noisy channels

Unidirectional Classical Communication

- Separate into 2 prominent communication problems
 - Compress messages with "low information content"
 - Transmit messages "noiselessly" over noisy channels

Information Theory

- How to quantify information?
- Shannon's entropy!
- Source X of distribution p_X has entropy $H(X) = -\sum_x p_X(x) \log(p_X(x))$ bits
- Operational significance: optimal asymptotic rate of compression for i.i.d. copies of source X

- Derived quantities: conditional entropy H(X|Y), mutual information I(X:Y)...
- Mutual information characterizes a noisy channel's capacity
 - ► Also the optimal channel simulation rate

Interactive Classical Communication

 Communication complexity of tasks, e.g. bipartite functions or relations

- Protocol transcript $\Pi(x, y, r, s) = m_1 m_2 \cdots m_M$
- Can memorize whole history

Coding for Interactive Protocols

- Protocol compression
 - Can we compress protocols that "do not convey much information"
 - ★ For many copies run in parallel?
 - ★ For a single copy?
 - What is the amount of information conveyed by a protocol?
 - ★ Optimal asymptotic compression rate?

Protocol Compression: Information Complexity

- Information complexity: $IC(f, \mu, \epsilon) = \inf_{\Pi} IC(\Pi, \mu)$
- Information cost: $IC(\Pi, \mu) = I(X : \Pi | YR) + I(Y : \Pi | XR)$
 - Amount of information each party learns about the other's input from the transcript
- Important properties:
 - ► Operational interpretation:
 - $IC(T) = ACC(T) = \limsup_{n \to \infty} \frac{1}{n} CC_n(T^{\otimes n})$ [BR11]
 - ▶ Lower bounds communication: $IC(T) \leq CC(T)$
 - Additivity: $IC(T_1 \otimes T_2) = IC(T_1) + IC(T_2)$
 - ▶ Direct sum on composite functions, e.g. $DISJ_n$ from AND

Applications of Classical Information Complexity

- Direct sum: $CC((f,\epsilon)^{\otimes n}) \approx nCC((f,\epsilon))$
- Direct product: $suc(f^n, \mu^n, o(Cn)) < suc(f, \mu, C)^{\Omega(n)}$
- Exact communication complexity bound!!
 - ► E.g. $CC(DISJ_n) = 0.4827 \cdot n \pm o(n)$
- Etc.

Quantum Information Theory

- von Neumann's quantum entropy: $H(A)_{\rho} = -Tr(\rho^{A} \log \rho^{A}) = H(\lambda_{i})$ for $\rho_A = \sum_i \lambda_i |i\rangle\langle i|$
- Characterizes optimal rate for quantum source compression
- Derived quantities defined in formal analogy to classical quantities
- Conditional entropy can be negative!
- Mutual information characterizes a channel's entanglement-assisted capacity and optimal simulation rate

Interactive Quantum Communication and QIC

- Yao: no pre-shared entanglement ψ , quantum messages m_i
- Cleve-Buhrman: arbitrary pre-shared entanglement ψ , classical messages m;
- Hybrid: arbitrary pre-shared entanglement ψ , quantum messages m_i
- Potential definition for quantum information cost: $QIC(\Pi, \mu) = I(X : m_1 m_2 \cdots m_M | Y) + I(Y : m_1 m_2 \cdots m_M | X)?$ No!!

Problems

- Bad $QIC(\Pi, \mu) = I(X : m_1 m_2 \cdots m_M | Y) + I(Y : m_1 \cdots | X)$
- Many problems
- Yao model:
 - \triangleright No-cloning theorem : cannot copy m_i , no transcript
 - Can only evaluate information quantities on registers defined at same moment in time
 - Not even well-defined!
- Cleve-Buhrman model:
 - $ightharpoonup m_i$'s could be completely uncorrelated to inputs
 - e.g. teleportation at each time step
 - Corresponding quantum information complexity is trivial

Potential Solutions

- 1) Keep as much information as possible, and measure final correlations, as in classical information cost
 - Problem : Reversible protocols: no garbage, only additional information is the output
 - Corresponding quantum information complexity is trivial
- 2) Measure correlations at each step [JRS03, JN14]

 - ▶ Problem: for M messages and total communication C, could be $\Omega(M \cdot C)$
 - ▶ We want $QIC \in O(QCC)$, independent of M,
 - ★ i.e. direct lower bound on communication

Approach: Reinterpret Classical Information Cost

- Shannon task: simulate noiseless channel over noisy channel
- Reverse Shannon task: simulate noisy channel over noiseless channel

Channel simulations

- channel M|I for input I, output/message M, side information S
- Known asymptotic cost : $\limsup_{n\to\infty} \frac{1}{n} \log |C_n| = I(I:M|S)$
- Sum of asymptotic channel simulation costs: good operational measure of information
- Rewrite $IC(\Pi, \mu) = I(XR^A : M_1 | YR^B) + I(YM_1R^B : M_1|YR^B) + I(YM_1R^B : M_1|YR^B :$ $M_2|XR^AM_1) + I(XM_1M_2R^A: M_3|YR^BM_1M_2)\cdots$
- Provides new proof of IC = ACC, and extends it to bounded rounds

Intuition for Quantum Information Complexity

- Take channel simulation view for quantum protocol
- Purify everything

- Quantum channel simulation with feedback and side information
- Equivalent to quantum state redistribution

Definition of Quantum Information Complexity

- Asymptotic communication cost is I(R : C|B) for R holding purification of input A / side information B, and output/message C
- $QIC(\Pi, \mu) = I(R : C_1|B_0) + I(R : C_2|A_1) + I(R : C_3|B_1) + \cdots$
- $QIC(T) = AQCC(T) = \limsup_{n \to \infty} \frac{1}{n} QCC_n(T^{\otimes n})$
- Satisfies all other desirable properties for an information complexity
- First general multi-round direct sum result for quantum communication complexity

Conclusion: Results

- Definition of QIC with desirable properties of classical IC
- Operational interpretation: QIC (T) = AQCC(T)
- Application to direct sum theorem for bounded round quantum communication complexity

Research Directions: Quantum Information Complexity

- Communication complexity lower bound
 - ▶ Bounded-round disjointness function and others [Building on JRS03]
- Prior-free quantum information complexity
- General upper bound on quantum communication complexity
- General lower bound on quantum information complexity
- Exponential separations between QIC and QCC
- Improved Direct sum
- Direct products, even for single round